Source code for lisatools.sensitivity

from __future__ import annotations
import warnings
from abc import ABC
from typing import Any, Tuple, Optional, List
from copy import deepcopy
import os

import math
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt

try:
    import cupy as cp

except (ModuleNotFoundError, ImportError):
    import numpy as cp

from . import detector as lisa_models
from .utils.utility import AET, get_array_module
from .utils.constants import *
from .stochastic import (
    StochasticContribution,
    FittedHyperbolicTangentGalacticForeground,
)

"""
The sensitivity code is heavily based on an original code by Stas Babak, Antoine Petiteau for the LDC team.

"""


[docs] class Sensitivity(ABC): """Base Class for PSD information. The initialization function is only needed if using a file input. """ channel: str = None
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: """Transform from the base sensitivity functions to the TDI PSDs. Args: f: Frequency array. Spm: Acceleration term. Sop: OMS term. **kwargs: For interoperability. Returns: Transformed TDI PSD values. """ raise NotImplementedError
[docs] @classmethod def get_Sn( cls, f: float | np.ndarray, model: Optional[lisa_models.LISAModel | str] = lisa_models.scirdv1, **kwargs: dict, ) -> float | np.ndarray: """Calculate the PSD Args: f: Frequency array. model: Noise model. Object of type :class:`lisa_models.LISAModel`. It can also be a string corresponding to one of the stock models. The model object must include attributes for ``Soms_d`` (shot noise) and ``Sa_a`` (acceleration noise) or a spline as attribute ``Sn_spl``. In the case of a spline, this must be a dictionary with channel names as keys and callable PSD splines. For example, if using ``scipy.interpolate.CubicSpline``, an input option can be: ``` noise_model.Sn_spl = { "A": CubicSpline(f, Sn_A)), "E": CubicSpline(f, Sn_E)), "T": CubicSpline(f, Sn_T)) } ``` **kwargs: For interoperability. Returns: PSD values. """ # spline or stock computation if hasattr(model, "Sn_spl") and model.Sn_spl is not None: spl = model.Sn_spl if cls.channel not in spl: raise ValueError("Calling a channel that is not available.") Sout = spl[cls.channel](f) else: model = lisa_models.check_lisa_model(model) assert hasattr(model, "Soms_d") and hasattr(model, "Sa_a") # get noise values Spm, Sop = model.lisanoises(f) # transform as desired for TDI combination Sout = cls.transform(f, Spm, Sop, **kwargs) # will add zero if ignored stochastic_contribution = cls.stochastic_transform( f, cls.get_stochastic_contribution(f, **kwargs), **kwargs ) Sout += stochastic_contribution return Sout
[docs] @classmethod def get_stochastic_contribution( cls, f: float | np.ndarray, stochastic_params: Optional[tuple] = (), stochastic_kwargs: Optional[dict] = {}, stochastic_function: Optional[StochasticContribution | str] = None, ) -> float | np.ndarray: """Calculate contribution from stochastic signal. This function directs and wraps the calculation of and returns the stochastic signal. The ``stochastic_function`` calculates the sensitivity contribution. The ``transform_factor`` can transform that output to the correct TDI contribution. Args: f: Frequency array. stochastic_params: Parameters (arguments) to feed to ``stochastic_function``. stochastic_kwargs: Keyword arguments to feeed to ``stochastic_function``. stochastic_function: Stochastic class or string name of stochastic class. Takes ``stochastic_args`` and ``stochastic_kwargs``. If ``None``, it uses :class:`FittedHyperbolicTangentGalacticForeground`. Returns: Contribution from stochastic signal. """ if isinstance(f, float): f = np.ndarray([f]) squeeze = True else: squeeze = False sgal = np.zeros_like(f) if ( (stochastic_params != () and stochastic_params is not None) or (stochastic_kwargs != {} and stochastic_kwargs is not None) or stochastic_function is not None ): if stochastic_function is None: stochastic_function = FittedHyperbolicTangentGalacticForeground assert len(stochastic_params) == 1 sgal[:] = stochastic_function.get_Sh( f, *stochastic_params, **stochastic_kwargs ) if squeeze: sgal = sgal.squeeze() return sgal
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: """Transform from the base stochastic functions to the TDI PSDs. **Note**: If not implemented, the transform will return the input. Args: f: Frequency array. Sh: Power spectral density in stochastic term. **kwargs: For interoperability. Returns: Transformed TDI PSD values. """ return Sh
[docs] class X1TDISens(Sensitivity): channel: str = "X"
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: __doc__ = ( "Transform from the base sensitivity functions to the XYZ TDI PSDs.\n\n" + Sensitivity.transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f return 16.0 * np.sin(x) ** 2 * (2.0 * (1.0 + np.cos(x) ** 2) * Spm + Sop)
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: __doc__ = ( "Transform from the base stochastic functions to the XYZ stochastic TDI information.\n\n" + Sensitivity.stochastic_transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f t = 4.0 * x**2 * np.sin(x) ** 2 return Sh * t
[docs] class Y1TDISens(X1TDISens): channel: str = "Y" __doc__ = X1TDISens.__doc__ pass
[docs] class Z1TDISens(X1TDISens): channel: str = "Z" __doc__ = X1TDISens.__doc__ pass
[docs] class XY1TDISens(Sensitivity): channel: str = "XY"
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: __doc__ = ( "Transform from the base sensitivity functions to the XYZ TDI PSDs.\n\n" + Sensitivity.transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f ## TODO Check the acceleration noise term return -4.0 * np.sin(2 * x) * np.sin(x) * (Sop + 4.0 * Spm)
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: __doc__ = ( "Transform from the base stochastic functions to the XYZ stochastic TDI information.\n\n" + Sensitivity.stochastic_transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f # TODO: check these functions # GB = -0.5 of X t = -0.5 * (4.0 * x**2 * np.sin(x) ** 2) return Sh * t
[docs] class ZX1TDISens(XY1TDISens): channel: str = "ZX" __doc__ = XY1TDISens.__doc__ pass
[docs] class YZ1TDISens(XY1TDISens): channel: str = "YZ" __doc__ = XY1TDISens.__doc__ pass
[docs] class X2TDISens(Sensitivity): channel: str = "X"
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: __doc__ = ( "Transform from the base sensitivity functions to the XYZ TDI PSDs.\n\n" + Sensitivity.transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f ## TODO Check the acceleration noise term return (64.0 * np.sin(x) ** 2 * np.sin(2 * x) ** 2 * Sop) + ( 256.0 * (3 + np.cos(2 * x)) * np.cos(x) ** 2 * np.sin(x) ** 4 * Spm )
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: __doc__ = ( "Transform from the base stochastic functions to the XYZ stochastic TDI information.\n\n" + Sensitivity.stochastic_transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f # TODO: check these functions for TDI2 t = 4.0 * x**2 * np.sin(x) ** 2 return Sh * t
[docs] class Y2TDISens(X2TDISens): channel: str = "Y" __doc__ = X2TDISens.__doc__ pass
[docs] class Z2TDISens(X2TDISens): channel: str = "Z" __doc__ = X2TDISens.__doc__ pass
[docs] class A1TDISens(Sensitivity): channel: str = "A"
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: __doc__ = ( "Transform from the base sensitivity functions to the A,E TDI PSDs.\n\n" + Sensitivity.transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f Sa = ( 8.0 * np.sin(x) ** 2 * ( 2.0 * Spm * (3.0 + 2.0 * np.cos(x) + np.cos(2 * x)) + Sop * (2.0 + np.cos(x)) ) ) return Sa
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: __doc__ = ( "Transform from the base stochastic functions to the XYZ stochastic TDI information.\n\n" + Sensitivity.stochastic_transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f t = 4.0 * x**2 * np.sin(x) ** 2 return 1.5 * (Sh * t)
[docs] class E1TDISens(A1TDISens): channel: str = "E" __doc__ = A1TDISens.__doc__ pass
[docs] class T1TDISens(Sensitivity): channel: str = "T"
[docs] @staticmethod def transform( f: float | np.ndarray, Spm: float | np.ndarray, Sop: float | np.ndarray, **kwargs: dict, ) -> float | np.ndarray: __doc__ = ( "Transform from the base sensitivity functions to the T TDI PSDs.\n\n" + Sensitivity.transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f return ( 16.0 * Sop * (1.0 - np.cos(x)) * np.sin(x) ** 2 + 128.0 * Spm * np.sin(x) ** 2 * np.sin(0.5 * x) ** 4 )
[docs] @staticmethod def stochastic_transform( f: float | np.ndarray, Sh: float | np.ndarray, **kwargs: dict ) -> float | np.ndarray: __doc__ = ( "Transform from the base stochastic functions to the XYZ stochastic TDI information.\n\n" + Sensitivity.stochastic_transform.__doc__.split("PSDs.\n\n")[-1] ) x = 2.0 * np.pi * lisaLT * f t = 4.0 * x**2 * np.sin(x) ** 2 return 0.0 * (Sh * t)
[docs] class LISASens(Sensitivity):
[docs] @classmethod def get_Sn( cls, f: float | np.ndarray, model: Optional[lisa_models.LISAModel | str] = lisa_models.scirdv1, average: bool = True, **kwargs: dict, ) -> float | np.ndarray: """Compute the base LISA sensitivity function. Args: f: Frequency array. model: Noise model. Object of type :class:`lisa_models.LISAModel`. It can also be a string corresponding to one of the stock models. average: Whether to apply averaging factors to sensitivity curve. Antenna response: ``av_resp = np.sqrt(5) if average else 1.0`` Projection effect: ``Proj = 2.0 / np.sqrt(3) if average else 1.0`` **kwargs: Keyword arguments to pass to :func:`get_stochastic_contribution`. # TODO: fix Returns: Sensitivity array. """ model = lisa_models.check_lisa_model(model) assert hasattr(model, "Soms_d") and hasattr(model, "Sa_a") # get noise values Sa_d, Sop = model.lisanoises(f, unit="displacement") all_m = np.sqrt(4.0 * Sa_d + Sop) ## Average the antenna response av_resp = np.sqrt(5) if average else 1.0 ## Projection effect Proj = 2.0 / np.sqrt(3) if average else 1.0 ## Approximative transfer function f0 = 1.0 / (2.0 * lisaLT) a = 0.41 T = np.sqrt(1 + (f / (a * f0)) ** 2) sens = (av_resp * Proj * T * all_m / lisaL) ** 2 # will add zero if ignored sens += cls.get_stochastic_contribution(f, **kwargs) return sens
[docs] class CornishLISASens(LISASens): """PSD from https://arxiv.org/pdf/1803.01944.pdf Power Spectral Density for the LISA detector assuming it has been active for a year. I found an analytic version in one of Niel Cornish's paper which he submitted to the arXiv in 2018. I evaluate the PSD at the frequency bins found in the signal FFT. PSD obtained from: https://arxiv.org/pdf/1803.01944.pdf """
[docs] @staticmethod def get_Sn( f: float | np.ndarray, average: bool = True, **kwargs: dict ) -> float | np.ndarray: # TODO: documentation here sky_averaging_constant = 20.0 / 3.0 if average else 1.0 L = 2.5 * 10**9 # Length of LISA arm f0 = 19.09 * 10 ** (-3) # transfer frequency # Optical Metrology Sensor Poms = ((1.5e-11) * (1.5e-11)) * (1 + np.power((2e-3) / f, 4)) # Acceleration Noise Pacc = ( (3e-15) * (3e-15) * (1 + (4e-4 / f) * (4e-4 / f)) * (1 + np.power(f / (8e-3), 4)) ) # constants for Galactic background after 1 year of observation alpha = 0.171 beta = 292 k = 1020 gamma = 1680 f_k = 0.00215 # Galactic background contribution Sc = ( 9e-45 * np.power(f, -7 / 3) * np.exp(-np.power(f, alpha) + beta * f * np.sin(k * f)) * (1 + np.tanh(gamma * (f_k - f))) ) # PSD PSD = (sky_averaging_constant) * ( (10 / (3 * L * L)) * (Poms + (4 * Pacc) / (np.power(2 * np.pi * f, 4))) * (1 + 0.6 * (f / f0) * (f / f0)) + Sc ) return PSD
[docs] class FlatPSDFunction(LISASens): """White Noise PSD function."""
[docs] @staticmethod def get_Sn(f: float | np.ndarray, val: float, **kwargs: dict) -> float | np.ndarray: # TODO: documentation here out = np.full_like(f, val) if isinstance(f, float): out = out.item() return out
[docs] class SensitivityMatrix: """Container to hold sensitivity information. Args: f: Frequency array. sens_mat: Input sensitivity list. The shape of the nested lists should represent the shape of the desired matrix. Each entry in the list must be an array, :class:`Sensitivity`-derived object, or a string corresponding to the :class:`Sensitivity` object. **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`. """ def __init__( self, f: np.ndarray, sens_mat: ( List[List[np.ndarray | Sensitivity]] | List[np.ndarray | Sensitivity] | np.ndarray | Sensitivity ), *sens_args: tuple, **sens_kwargs: dict, ) -> None: self.frequency_arr = f self.data_length = len(self.frequency_arr) self.sens_args = sens_args self.sens_kwargs = sens_kwargs self.sens_mat = sens_mat @property def frequency_arr(self) -> np.ndarray: return self._frequency_arr @frequency_arr.setter def frequency_arr(self, frequency_arr: np.ndarray) -> None: assert frequency_arr.dtype == np.float64 or frequency_arr.dtype == float assert frequency_arr.ndim == 1 self._frequency_arr = frequency_arr
[docs] def update_frequency_arr(self, frequency_arr: np.ndarray) -> None: """Update class with new frequency array. Args: frequency_arr: Frequency array. """ self.frequency_arr = frequency_arr self.sens_mat = self.sens_mat_input
[docs] def update_model(self, model: lisa_models.LISAModel) -> None: """Update class with new sensitivity model. Args: model: Noise model. Object of type :class:`lisa_models.LISAModel`. It can also be a string corresponding to one of the stock models. """ self.sens_kwargs["model"] = model self.sens_mat = self.sens_mat_input
[docs] def update_stochastic(self, **kwargs: dict) -> None: """Update class with new stochastic function. Args: **kwargs: Keyword arguments update for :func:`lisatools.sensitivity.Sensitivity.get_stochastic_contribution`. This operation will combine the new and old kwarg dictionaries, updating any old information with any added corresponding new information. **Note**: any old information that is not updated will remain in place. """ self.sens_kwargs = {**self.sens_kwargs, **kwargs} self.sens_mat = self.sens_mat_input
@property def sens_mat(self) -> np.ndarray: """Get sensitivity matrix.""" return self._sens_mat @sens_mat.setter def sens_mat( self, sens_mat: ( List[List[np.ndarray | Sensitivity]] | List[np.ndarray | Sensitivity] | np.ndarray | Sensitivity ), ) -> None: """Set sensitivity matrix.""" self.sens_mat_input = deepcopy(sens_mat) self._sens_mat = np.asarray(sens_mat, dtype=object) # not an new_out = np.full(len(self._sens_mat.flatten()), None, dtype=object) self.return_shape = self._sens_mat.shape for i in range(len(self._sens_mat.flatten())): current_sens = self._sens_mat.flatten()[i] if hasattr(current_sens, "get_Sn") or isinstance(current_sens, str): new_out[i] = get_sensitivity( self.frequency_arr, *self.sens_args, sens_fn=current_sens, **self.sens_kwargs, ) elif isinstance(current_sens, np.ndarray) or isinstance( current_sens, cp.ndarray ): new_out[i] = current_sens else: raise ValueError xp = get_array_module(new_out[0]) # setup in array form self._sens_mat = xp.asarray(list(new_out), dtype=float).reshape( self.return_shape + (-1,) ) def __getitem__(self, index: Any) -> np.ndarray: """Indexing the class indexes the array.""" return self.sens_mat[index] @property def ndim(self) -> int: """Dimensionality of sens mat array.""" return self.sens_mat.ndim
[docs] def flatten(self) -> np.ndarray: """Flatten sens mat array.""" return self.sens_mat.reshape(-1, self.sens_mat.shape[-1])
@property def shape(self) -> tuple: """Shape of sens mat array.""" return self.sens_mat.shape
[docs] def loglog( self, ax: Optional[plt.Axes] = None, fig: Optional[plt.Figure] = None, inds: Optional[int | tuple] = None, char_strain: Optional[bool] = False, **kwargs: dict, ) -> Tuple[plt.Figure, plt.Axes]: """Produce a log-log plot of the sensitivity. Args: ax: Matplotlib Axes objects to add plots. Either a list of Axes objects or a single Axes object. fig: Matplotlib figure object. inds: Integer index to select out which data to add to a single access. A list can be provided if ax is a list. They must be the same length. char_strain: If ``True``, plot in characteristic strain representation. **Note**: assumes the sensitivity is input as power spectral density. **kwargs: Keyword arguments to be passed to ``loglog`` function in matplotlib. Returns: Matplotlib figure and axes objects in a 2-tuple. """ if (ax is None and fig is None) or ( ax is not None and (isinstance(ax, list) or isinstance(ax, np.ndarray)) ): if ax is None and fig is None: outer_shape = self.shape[:-1] if len(outer_shape) == 2: nrows = outer_shape[0] ncols = outer_shape[1] elif len(outer_shape) == 1: nrows = 1 ncols = outer_shape[0] fig, ax = plt.subplots(nrows, ncols, sharex=True, sharey=True) try: ax = ax.ravel() except AttributeError: ax = [ax] # just one axis object, no list else: assert len(ax) == np.prod(self.shape[:-1]) for i in range(np.prod(self.shape[:-1])): plot_in = self.flatten()[i] if char_strain: plot_in = np.sqrt(self.frequency_arr * plot_in) ax[i].loglog(self.frequency_arr, plot_in, **kwargs) elif fig is not None: raise NotImplementedError elif isinstance(ax, plt.axes): if inds is None: raise ValueError( "When passing a single axes object for `ax`, but also pass `inds` kwarg." ) plot_in = self.sens_mat[inds] if char_strain: plot_in = np.sqrt(self.frequency_arr * plot_in) ax.loglog(self.frequency_arr, plot_in, **kwargs) else: raise ValueError( "ax must be a list of axes objects or a single axes object." ) return (fig, ax)
[docs] class XYZ1SensitivityMatrix(SensitivityMatrix): """Default sensitivity matrix for XYZ (TDI 1) This is 3x3 symmetric matrix. Args: f: Frequency array. **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`. """ def __init__(self, f: np.ndarray, **sens_kwargs: dict) -> None: sens_mat = [ [X1TDISens, XY1TDISens, ZX1TDISens], [XY1TDISens, Y1TDISens, YZ1TDISens], [ZX1TDISens, YZ1TDISens, Z1TDISens], ] super().__init__(f, sens_mat, **sens_kwargs)
[docs] class AET1SensitivityMatrix(SensitivityMatrix): """Default sensitivity matrix for AET (TDI 1) This is just an array because no cross-terms. Args: f: Frequency array. **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`. """ def __init__(self, f: np.ndarray, **sens_kwargs: dict) -> None: sens_mat = [A1TDISens, E1TDISens, T1TDISens] super().__init__(f, sens_mat, **sens_kwargs)
[docs] class AE1SensitivityMatrix(SensitivityMatrix): """Default sensitivity matrix for AE (no T) (TDI 1) Args: f: Frequency array. **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`. """ def __init__(self, f: np.ndarray, **sens_kwargs: dict) -> None: sens_mat = [A1TDISens, E1TDISens] super().__init__(f, sens_mat, **sens_kwargs)
[docs] class LISASensSensitivityMatrix(SensitivityMatrix): """Default sensitivity matrix adding :class:`LISASens` for the specified number of channels. Args: f: Frequency array. nchannels: Number of channels. **sens_kwargs: Keyword arguments to pass to :func:`Sensitivity.get_Sn`. """ def __init__(self, f: np.ndarray, nchannels: int, **sens_kwargs: dict) -> None: sens_mat = [LISASens for _ in range(nchannels)] super().__init__(f, sens_mat, **sens_kwargs)
[docs] def get_sensitivity( f: float | np.ndarray, *args: tuple, sens_fn: Optional[Sensitivity | str] = LISASens, return_type="PSD", **kwargs, ) -> float | np.ndarray: """Generic sensitivity generator Same interface to many sensitivity curves. Args: f: Frequency array. *args: Any additional arguments for the sensitivity function ``get_Sn`` method. sens_fn: String or class that represents the name of the desired PSD function. return_type: Described the desired output. Choices are ASD, PSD, or char_strain (characteristic strain). Default is ASD. **kwargs: Keyword arguments to pass to sensitivity function ``get_Sn`` method. Return: Sensitivity values. """ if isinstance(sens_fn, str): try: sensitivity = globals()[sens_fn] except KeyError: raise ValueError( f"{sens_fn} sensitivity is not available. Available stock sensitivities are" ) elif hasattr(sens_fn, "get_Sn"): sensitivity = sens_fn else: raise ValueError( "sens_fn must be a string for a stock option or a class with a get_Sn method." ) PSD = sensitivity.get_Sn(f, *args, **kwargs) if return_type == "PSD": return PSD elif return_type == "ASD": return PSD ** (1 / 2) elif return_type == "char_strain": return (f * PSD) ** (1 / 2) else: raise ValueError("return_type must be PSD, ASD, or char_strain.")
__stock_sens_options__ = [ "X1TDISens", "Y1TDISens", "Z1TDISens", "XY1TDISens", "YZ1TDISens", "ZX1TDISens", "A1TDISens", "E1TDISens", "T1TDISens", "X2TDISens", "Y2TDISens", "Z2TDISens", "LISASens", "CornishLISASens", "FlatPSDFunction", ]
[docs] def get_stock_sensitivity_options() -> List[Sensitivity]: """Get stock options for sensitivity curves. Returns: List of stock sensitivity options. """ return __stock_sens_options__
__stock_sensitivity_mat_options__ = [ "XYZ1SensitivityMatrix", "AET1SensitivityMatrix", "AE1SensitivityMatrix", ]
[docs] def get_stock_sensitivity_matrix_options() -> List[SensitivityMatrix]: """Get stock options for sensitivity matrix. Returns: List of stock sensitivity matrix options. """ return __stock_sensitivity_mat_options__