GW Source Tools
Waveform Base Classes
These waveform classes are used as base objects for specifically designed waveform tools in lisatools.sources
.
BBHs
GBs
EMRIs
Calculation Controllers
These classes are used as simplified wrappers for investigative computations like SNR and covariance.
- class lisatools.sources.CalculationController(aet_template_gen: ~lisatools.sources.waveformbase.SNRWaveform | ~lisatools.sources.waveformbase.AETTDIWaveform, model: ~lisatools.detector.LISAModel, psd_kwargs: dict, Tobs: float, dt: float, psd: ~lisatools.sensitivity.Sensitivity = <class 'lisatools.sensitivity.A1TDISens'>)
Bases:
object
Wrapper class to controll investigative computations.
- Parameters:
aet_template_gen – Template waveform generator.
model – Model for LISA.
psd_kwargs – psd_kwargs for
lisatools.sensitivity.get_sensitivity()
.Tobs – Observation time in years.
dt – Timestep in seconds.
psd – Sensitivity curve type to use. Default is
A1TDISens
because we ignoreT
in these simplified calculations and theA
andE
sensitivities are equivalent.
- property parameter_transforms: TransformContainer
Transform parameters from sampling basis to waveform basis.
- get_snr(*params: Any, **kwargs: Any) float
Compute the SNR.
- Parameters:
*params – Parameters to go into waveform generator.
**kwargs – Kwargs for waveform generator.
- Returns:
SNR.
- class lisatools.sources.BBHCalculationController(*args: Any, **kwargs: Any)
Bases:
CalculationController
Calculation controller for BBHs.
- Parameters:
*args – Args for
CalculationController
.*kwargs – Kwargs for
CalculationController
.
- get_snr(*args: Any, **kwargs: Any) float
Compute the SNR.
- Parameters:
*params – Parameters to go into waveform generator.
**kwargs – Kwargs for waveform generator.
- Returns:
SNR.
- get_cov(*params: Any, more_accurate: bool = False, eps: float = 1e-09, deriv_inds: ndarray = None, precision: bool = False, **kwargs: Any) Tuple[ndarray, ndarray]
Get covariance matrix.
- Parameters:
*params – Parameters for BBH. Must include
f_ref
.more_accurate – If
True
, run a more accurate derivate requiring 2x more waveform generations.eps – Absolute derivative step size. See
lisatools.diagnostic.info_matrix()
.deriv_inds – Subset of parameters of interest for which to calculate the information matrix, by index. If
None
, it will benp.arange(len(params))
.precision – If
True
, uses 500-dps precision to compute the information matrix inverse (requires mpmath). This is typically a good idea as the information matrix can be highly ill-conditioned.**kwargs – Kwargs for waveform generation.
- Returns:
Parameters and covariance matrix.
- class lisatools.sources.GBCalculationController(*args: Any, **kwargs: Any)
Bases:
CalculationController
Calculation controller for GBs.
- Parameters:
*args – Args for
CalculationController
.*kwargs – Kwargs for
CalculationController
.
- get_cov(*params: ndarray | list, more_accurate: bool = False, eps: float = 1e-09, deriv_inds: ndarray = None, precision: bool = False, **kwargs: Any) Tuple[ndarray, ndarray]
Get covariance matrix.
- Parameters:
*params – Parameters for GB. Must include
fddot
.more_accurate – If
True
, run a more accurate derivate requiring 2x more waveform generations.eps – Absolute derivative step size. See
lisatools.diagnostic.info_matrix()
.deriv_inds – Subset of parameters of interest for which to calculate the information matrix, by index. If
None
, it will benp.arange(len(params))
.precision –
If
True
, uses 500-dps precision to compute the information matrix inverse (requires mpmath). This is typically a good idea as the information matrix can be highly ill-conditioned.**kwargs – Kwargs for waveform generation.
- Returns:
Parameters and covariance matrix.
- get_snr(*args: Any, **kwargs: Any) float
Compute the SNR.
- Parameters:
*params – Parameters to go into waveform generator.
**kwargs – Kwargs for waveform generator.
- Returns:
SNR.
- class lisatools.sources.EMRICalculationController(*args: Any, **kwargs: Any)
Bases:
CalculationController
Calculation controller for EMRIs.
- Parameters:
*args – Args for
CalculationController
.*kwargs – Kwargs for
CalculationController
.
- get_cov(*params: ndarray | list, more_accurate: bool = False, eps: float = 1e-09, deriv_inds: ndarray = None, precision: bool = False, **kwargs: Any) Tuple[ndarray, ndarray]
Get covariance matrix.
- Parameters:
*params – Parameters for EMRIs.
more_accurate – If
True
, run a more accurate derivate requiring 2x more waveform generations.eps – Absolute derivative step size. See
lisatools.diagnostic.info_matrix()
.deriv_inds – Subset of parameters of interest for which to calculate the information matrix, by index. If
None
, it will benp.arange(len(params))
.precision –
If
True
, uses 500-dps precision to compute the information matrix inverse (requires mpmath). This is typically a good idea as the information matrix can be highly ill-conditioned.**kwargs – Kwargs for waveform generation.
- Returns:
Parameters and covariance matrix.
Default Response Settings for GW tools
- class lisatools.sources.defaultresponse.DefaultResponseKwargs
Bases:
object
Default response kwargs
Default response kwargs for fastlisaresponse.ResponseWrapper.
t0=30000.0
order=25
tdi="1st generation"
tdi_chan="AET"
orbits=EqualArmlengthOrbits()
- classmethod get_dict() dict
Return default dictionary