Utilities
- lisatools.utils.utility.get_array_module(arr: ndarray) object
Return array library of an array (np/cp).
- Parameters:
arr – Numpy or Cupy array.
- lisatools.utils.utility.generate_noise_fd(N: int, df: float, *sensitivity_args: Any, func: Callable | None = None, **sensitivity_kwargs: Any) ndarray[float]
Generate noise directly in the Frequency Domain.
- Parameters:
N – Number of points in frequency domain waveform assuming frequencies greater than or equal to zero.
df – Frequency domain bin size (
1 / (N * dt)).sensitivity_args – Arguments for
func.func – Function for generating the sensitivity curve as a function of frequency. (default:
lisatools.sensitivity.get_sensivity())sensitivity_kwargs – Keyword arguments for
func.
- Returns:
An instance of generated noise in the frequency domain.
- lisatools.utils.utility.AET(X: float | ndarray, Y: float | ndarray, Z: float | ndarray) Tuple[float | ndarray, float | ndarray, float | ndarray]
Transform to AET from XYZ
\[A = (Z - X) / \sqrt(2)\]\[E = (X - 2Y + Z) / \sqrt(6)\]\[T = (X + Y + Z) / \sqrt(3)\]- Parameters:
X – X-channel information.
Y – Y-channel information.
Z – Z-channel information.
- Returns:
A, E, T Channels.